ALGORITMA NAIVE BAYES UNTUK PENENTUAN PKH (PROGRAM KELUARGA HARAPAN) BERBASIS SISTEM PENDUKUNG KEPUTUSAN (STUDI KASUS : KELURAHAN KARANGANYAR GUNUNG SEMARANG)

Amin Abdullah Sidiq, Febrian Wahyu Christanto

Abstract

The Family Hope Program is a program of providing conditional social assistance to poor families that are designated as PKH beneficiary families. As a conditional social assistance program, PKH opens access to poor families especially pregnant women and children to take advantage of the various health service facilities (Faskes) and educational service facilities (Fasdik) available around them. The benefits of PKH also have begun to be encouraged to cover people with disabilities and the elderly by maintaining the level of social welfare in accordance with the mandate of the constitution and the President's Nawacita. In the area of Karanganyar Gunung Village in Semarang, this assistance is given if the prospective recipient is deemed to have met the requirements and criteria for example job status, house status, number of dependents, education component, electricity expenditure, and water. This research was conducted because of the many weaknesses in the scoring system used. In Karanganyar Gunung Village, the assessment is still subjective and manual, this is of course in the distribution of PKH (Family Hope Program) aid recipients is not evenly distributed and mis-targeted. Therefore, this research was conducted to create a decision support system called E-PKH that uses the Naïve Bayes classification algorithm method which produces the labels "WORTH" and "NOT WORTH" which has 5 variables for the process of selecting citizens who will get help and then applied in CodeIgniter's PHP framework programming. The results of this study are in the form of a system that will have 2 actors namely the RT as the data collector and the sub-district as the selectors. So that if the residents are confirmed to have received PKH (Family Hope Program) assistance, the RT can check the continuation of the assistance whether it is approved or rejected. Hopefully in the future this application can help in determining assistance from the government not only PKH (Family Hope Program), but for other assistance.

Full Text:

PDF

References

Ainul Yaqien, H. (2016). Sistem Pendukung Keputusan Penerima Program Keluarga Harapan Menggunakan Metode Naive Bayes. Kediri.

Indriani, A. (2014). Klasifikasi Data Forum dengan menggunakan Metode Naive Bayes Classifier. In Seminar Nasional Aplikasi Teknologi Informasi (Vol. 20).

Laroussi, H. M. M. AL. (2015). Implementasi Algoritma Naive Bayes Sebagai Proses Seleksi Penerima Beasiswa Libyan Embassy Berbasis Web. Malang.

Murnawan, H., & Mustofa. (2014). Perencaan Produktivitas Kerja dari Hasil Evaluasi Produktivitas dengan Metode Fishbone di Perusahaan Percetakaan Kemasan PT.X. Jurnal Teknik Industri HEURISTIC, Volume 11(1), 27–46. Retrieved from https://jurnal.untag-sby.ac.id/index.php/HEURISTIC/article/view/611/555.

Pressman, R. S. (2012). Rekayasa Perangkat Lunak Praktisi. In 1 (7th ed.). Yogyakarta: Andi.

Nofriansyah, D. (2014). Konsep Data Mining vs Sistem Pendukung Keputusan (Edisi 1). Yogyakarta: Deepublish.

Raharjo, B. (2015). Belajar Otodidak Framework Code Igniter. Bandung: Informatika.

Rahman, A. A., & Kurniawan, Y. I. (2018). Aplikasi Klasifikasi Penerima Kartu Indonesia Sehat Menggunakan Algoritma Naïve Bayes Classifier. In Jurnal Teknologi dan Manajemen Informatika (Vol. 4). https://doi.org/10.26905/jtmi.v4i1.1870.

Ramadhan, A. (2008). Pembangunan Framework Sederhana untuk Aplikasi Sistem Informasi Sekolah. Bandung.

Septiari, D. (2016). Implementasi Metode Naive Bayes Classification Dalam Klasifikasi Kelayakan Calon Pendonor Darah (Studi Kasus Pmi Kab. Demak). In Skripsi.

Solamo, M. R. C. (2006). Software Engineering. 1.2.

Sugianto, C. A., & Maulana, F. R. (2019). Algoritma Naïve Bayes Untuk Klasifikasi Penerima Bantuan Pangan Non Tunai ( Studi Kasus Kelurahan Utama ). Techno.Com, 18(4), 321–331. https://doi.org/10.33633/tc.v18i4.2587.

Sugiarti, Y. (2013). ANALISIS DAN PERANCANGAN UML (Unified Modeling Language) Generated VB.6. In Graha Ilmu (Edisi Pert, p. 112). Retrieved from info@grahailmu.co.id.

Susanti, Y., Rosita, Y. D., & Hanum, D. (2018). Penerapan Metode Naive Bayes Dan Simple Additive Weighting Dalam Penentuan Penerima Program Keluarga Harapan. Seminar Nasional Sains Dan Teknologi Terapan, 205–210.

Turban, E. (2005). Decision Support Systems and Intelligent Systems Edisi Bahasa Indonesia Jilid 1. Yogyakarta: Andi.

Uriawan, W., & Yusfira, G. Z. (2018). Prediksi Penerima Beasiswa Pegawai Menggunakan Metode Naive Bayes Classifier.

Widyadara, M. A. D., & Irawan, R. H. (2019). Implementasi Metode Naïve Bayes Dalam Penentuan Tingkat Kesejahteraan Keluarga. RESEARCH : Computer, Information System & Technology Management, 2(01), 19. https://doi.org/10.25273/research.v2i1.4259.

Wulandari, F. (2019). Sistem Pengklasifikasian Pemilihan Penerima Beras Miskin (Raskin) Menggunakan Metode Naive Bayes Classifier (NBC). Yogyakarta.

Refbacks

  • There are currently no refbacks.